Ringe
Lab
Computational Modeling Lab
Ringe
Lab
Home
Members
Research
Research Overview
Solvation and Electrified Interfaces
Materials Screening
Multiscale modeling
Software
MPBE/FHI-aims
CatINT/COMSOL
Gallery
Publications
Contact
(† = equal contribution, * = corresponding author)
2024
Nucleation-Controlled Doping of II–VI Semiconductor Nanocrystals Mediated by Magic-Sized Clusters
S. Ji†
,
H. G. Abbas
†
,
S. Y. Kim
†
,
H. C. Lee
,
K. Lee
,
S. Li
,
S. Choe
,
H. Ahn
,
S. Ringe
*
,
J. Yang*
Small Sci.
2024
,
,
2400300
.
Cite
DOI
Deciphering electrochemical methanol production
S. Ringe*
Nature Catalysis
2024
,
7
,
955-956
.
Cite
DOI
Spatiotemporal Nitric Oxide Modulation via Electrochemical Platform to Profile Tumor Cell Response
C. Won†
,
S. Kim†
,
D. Kwak
†
,
T. Kim
,
J. Kim
,
E. Lee
,
S. Kim
,
Adith. R. V
,
S. Ringe*
,
H. I. Kim*
,
K. Jin*
Angew Chem Int Ed Engl
2024
,
,
e202411260
.
Cite
DOI
Elucidating Solvatochromic Shifts in Two-Dimensional Photocatalysts by Solving the Bethe–Salpeter Equation Coupled with Implicit Solvation Method
S. Kim†
,
S. Lebègue*
,
S. Ringe*
,
H. Kim*
J. Phys. Chem. Lett.
2024
,
15
,
4575-4580
.
Cite
DOI
2023
An implicit electrolyte model for plane wave density functional theory exhibiting nonlinear response and a nonlocal cavity definition
S. M. R. Islam
,
F. Khezeli
,
S. Ringe
,
C. Plaisance*
J. Chem. Phys.
2023
,
159
,
234117
.
Cite
DOI
Heterogeneous Catalyst as a Functional Substrate Governing the Shape of Electrochemical Precipitates in Oxygen-Fueled Rechargeable Batteries
M. Park†
,
S. Cho†
,
J.Yang
,
V. W. Lau
,
K. H. Kim
,
J. H. Park
,
S. Ringe*
,
Y. M. Kang*
J. Am. Chem. Soc.
2023
,
145
,
15425-15434
.
Cite
DOI
Trace-Level Cobalt Dopants Enhance CO
2
Electroreduction and Ethylene Formation on Copper
B. Kim†
,
Y. C. Tan†
,
Y. Ryu†
,
K.Jang
,
H. G. Abbas
,
T. Kang
,
H. Choi
,
K. S. Lee
,
S. Park
,
W. Kim
,
P.P. Choi*
,
S. Ringe*
,
J. Oh*
ACS Energy Lett.
2023
,
8
,
3356–3364
.
Cite
DOI
COVER
The importance of a charge transfer descriptor for screening potential CO
2
reduction electrocatalysts
S. Ringe*
Nat. Commun.
2023
,
14
,
2598
.
Cite
DOI
Cation effects on electrocatalytic reduction processes at the example of the hydrogen evolution reaction
S. Ringe*
Current Opinion in Electrochemistry
2023
,
39
,
101268
.
Cite
DOI
Tuning the C
1
/C
2
Selectivity of Electrochemical CO
2
Reduction on Cu-CeO
2
Nanorods by Oxidation State Control
S. Hong†
,
H. G. Abbas†
,
K. Jang†
,
K. K. Patra
,
B. Kim
,
B. U. Choi
,
H. Song
,
K. S. Lee
,
P. P. Choi*
,
S. Ringe*
,
J. Oh*
Adv. Mater.
2023
,
35
,
2208996
.
Cite
DOI
COVER
Active and stable PtP
2
-based electrocatalysts solve the phosphate poisoning issue of high temperature fuel cells
J.H. Yu†
,
K. P. Singh†
,
S. Kim
,
T. H. Kang
,
K. S. Lee
,
H. Kim*
,
S. Ringe*
,
J. S. Yu*
J. Mater. Chem. A.
2023
,
11
,
6413-6427
.
Cite
DOI
2022
A unifying mechanism for cation effect modulating C
1
and C
2
productions from CO
2
electroreduction
S. J Shin†
,
H. Choi†
,
S. Ringe
,
D. H. Won
,
H. S. Oh
,
D. H Kim
,
T. Lee
,
D. H. Nam
,
H. K. Kim*
,
C. H. Choi*
Nat. Commun.
2022
,
13
,
5482
.
Cite
DOI
Alkali Metal Ion Substituted Carboxymethyl Cellulose as Anode Polymeric Binders for Rapidly Chargeable Lithium-Ion Batteries
S. Byun†
,
Z. Liu†
,
D. O. Shin†
,
K. Kim†
,
J. Choi
,
Y. Roh
,
D. Jin
,
S. Jung
,
K. -G. Kim
,
Y. -G. Lee*
,
S. Ringe*
,
Y.M. Lee*
Energy Environ. Mater.
2022
,
7
,
e12509
.
Cite
DOI
Boosting Electrochemical CO2 Reduction to Methane via Tuning Oxygen Vacancy Concentration and Surface Termination on a Copper/Ceria Catalyst
K. K. Patra†
,
Z. Liu†
,
H. Lee†
,
S. Hong
,
H. Song
,
H. G. Abbas
,
Y. Kwon*
,
S. Ringe*
,
J. Oh*
ACS Catal.
2022
,
12
,
10973 - 10983
.
Cite
DOI
GW Quasiparticle Energies and Bandgaps of Two-Dimensional Materials Immersed in Water
S. Kim
,
S. Lebègue
,
S. Ringe*
,
H. Kim*
J. Phys. Chem. Lett.
2022
,
13
,
7574 - 7582
.
Cite
DOI
Implicit Solvation Methods for Catalysis at Electrified Interfaces
S. Ringe†*
,
N. G. Hörmann†
,
H. Oberhofer
,
K. Reuter*
Chem. Rev.
2022
,
122
,
10777 - 10820
.
Cite
DOI
Strained Pt(221) Facet in a PtCo@Pt-Rich Catalyst Boosts Oxygen Reduction and Hydrogen Evolution Activity
E. B. Tetteh†
,
C. Gyan-Barimah†
,
H. Lee†
,
T. Kang
,
S. Kang
,
S. Ringe*
,
J. Yu*
ACS Appl. Mater. Interfaces
2022
,
14
,
25246 - 25256
.
Cite
DOI
Using pH Dependence to Understand Mechanisms in Electrochemical CO Reduction
G. Kastlunger*
,
L. Wang
,
N. Govindarajan
,
H. H. Heenen
,
S. Ringe
,
T. Jaramillo
,
C. Hahn*
,
K. Chan*
ACS Catal.
2022
,
12
,
4344 - 4357
.
Cite
DOI
On the importance of the electric double layer structure in aqueous electrocatalysis
S. Shin†
,
D. H. Kim†
,
G. Bae†
,
S. Ringe
,
H. Choi
,
H. Lim
,
C. H. Choi*
,
H. Kim*
Nat. Commun.
2022
,
13
,
174
.
Cite
DOI
2021
Approaching in-depth mechanistic understanding of electrochemical hydrogen conversion from computational simulations
S. Ringe*
Chem Catalysis
2021
,
1
,
1160 - 1162
.
Cite
DOI
Tunable Product Selectivity in Electrochemical CO2 Reduction on Well-Mixed Ni-Cu Alloys
H. Song
,
Y. C. Tan
,
B. Kim
,
S. Ringe*
,
J. Oh*
ACS Appl. Mater. Interfaces
2021
,
13
,
55272 - 55280
.
Cite
DOI
Design of less than 1 nm Scale Spaces on SnO
2
Nanoparticles for High‐Performance Electrochemical CO
2
Reduction
M. K. Kim
,
H. Lee
,
J. H. Won
,
W. Sim
,
S. J. Kang
,
H. Choi
,
M. Sharma
,
H. Oh
,
S. Ringe*
,
Y. Kwon*
,
H. M. Jeong*
Adv. Funct. Mater.
2021
,
32
,
2107349
.
Cite
DOI
COVER
Selective electrochemical reduction of nitric oxide to hydroxylamine by atomically dispersed iron catalyst
D. H. Kim†
,
S. Ringe†
,
H. Kim
,
S. Kim
,
B. Kim
,
G. Bae
,
H. Oh
,
F. Jaouen
,
W. Kim*
,
H. Kim*
,
C. H. Choi*
Nat. Commun.
2021
,
12
,
1 - 11
.
Cite
DOI
2020
Atomistic Insight into Cation Effects on Binding Energies in Cu-Catalyzed Carbon Dioxide Reduction
T. Ludwig
,
J. A. Gauthier
,
C. F. Dickens
,
K. S. Brown
,
S. Ringe
,
K. Chan
,
J. K. Nørskov*
J. Phys. Chem. C
2020
,
124
,
24765–24775
.
Cite
DOI
Thermal Transformation of Molecular Ni
2+
–N
4
Sites for Enhanced CO
2
Electroreduction Activity
Y. J. Sa†
,
H. Jung†
,
D. Shin†
,
H. Y. Jeong
,
S. Ringe
,
H. Kim*
,
Y. J. Hwang*
,
S. H. Joo*
ACS Catal.
2020
,
10
,
10920 - 10931
.
Cite
DOI
Electric field mediated selectivity switching of electrochemical CO
2
reduction from formate to CO on carbon supported Sn
M. Lee†
,
S. Ringe†
,
H. Kim*
,
S. Kang*
,
Y. Kwon*
ACS Energy Lett.
2020
,
5
,
2987 - 2994
.
Cite
DOI
COVER
Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on Gold
S. Ringe†*
,
C. G. Morales-Guio†
,
L. D. Chen
,
M. Fields
,
T. F. Jaramillo
,
C. Hahn
,
K. Chan*
Nat. Commun.
2020
,
11
,
1 - 11
.
Cite
DOI
2019
Confined local oxygen gas promotes electrochemical water oxidation to hydrogen peroxide
C. Xia†
,
S. Back†
,
S. Ringe†
,
K. Jiang
,
F. Chen
,
X. Sun
,
S. Siahrostami*
,
K. Chan*
,
H. Wang*
Nature Catalysis
2020
,
1
,
1 - 10
.
Cite
DOI
Unified Approach to Implicit and Explicit Solvent Simulations of Electrochemical Reaction Energetics
J. A. Gauthier
,
C. F. Dickens
,
H. H. Heenen
,
S. Vijay
,
S. Ringe
,
K. Chan*
J. Chem. Theory Comput.
2019
,
15
,
6895 - 6906
.
Cite
DOI
Practical Considerations for Continuum Models Applied to Surface Electrochemistry
J. A. Gauthier†
,
C. F. Dickens†
,
S. Ringe
,
K. Chan*
Chemphyschem
2019
,
20
,
3074 - 3080
.
Cite
DOI
Understanding cation effects in electrochemical CO
2
reduction
S. Ringe†*
,
E. L. Clark†
,
J. Resasco
,
A. Walton
,
B. Seger
,
A. T. Bell
,
K. Chan*
Energy Environ. Sci.
2019
,
12
,
3001 - 3014
.
Cite
DOI
HIGHLIGHT
HOT
COVER
A Two-Dimensional MoS
2
Catalysis Transistor by Solid-State Ion Gating Manipulation and Adjustment (SIGMA)
Y. Wu†
,
S. Ringe†
,
C. Wu
,
W. Chen
,
A. Yang
,
H. Chen
,
M. Tang
,
G. Zhou
,
H. Y. Hwang
,
K. Chan*
,
Y. Cui*
Nano Lett.
2019
,
19
,
7293 - 7300
.
Cite
DOI
Influence of Atomic Surface Structure on the Activity of Ag for the Electrochemical Reduction of CO
2
to CO
E. L. Clark†
,
S. Ringe†
,
M. Tang
,
A. Walton
,
C. Hahn
,
T. F. Jaramillo
,
K. Chan
,
A. T. Bell*
ACS Catal.
2019
,
9
,
4006 - 4014
.
Cite
DOI
Solvent–Adsorbate Interactions and Adsorbate-Specific Solvent Structure in Carbon Dioxide Reduction on a Stepped Cu Surface
T. Ludwig
,
J. A. Gauthier
,
K. S. Brown
,
S. Ringe
,
J. K. Nørskov
,
K. Chan*
J. Phys. Chem. C
2019
,
123
,
5999 - 6009
.
Cite
DOI
Challenges in Modeling Electrochemical Reaction Energetics with Polarizable Continuum Models
J. A. Gauthier
,
S. Ringe
,
C. F. Dickens
,
A. J. Garza
,
A. T. Bell
,
M. Head-Gordon
,
J. K. Nørskov
,
K. Chan*
ACS Catal.
2019
,
9
,
920 - 931
.
Cite
DOI
Generalized molecular solvation in non-aqueous solutions by a single parameter implicit solvation scheme
C. Hille†
,
S. Ringe†*
,
M. Deimel
,
C. Kunkel
,
W. E. Acree
,
K. Reuter
,
H. Oberhofer
J. Chem. Phys.
2019
,
150
,
041710
.
Cite
DOI
pH effects on the electrochemical reduction of CO
2
towards C
2
products on stepped copper
X. Liu
,
P. Schlexer
,
J. Xiao
,
Y. Ji
,
L. Wang
,
R. B. Sandberg
,
M. Tang
,
K. S. Brown
,
H. Peng
,
S. Ringe
,
C. Hahn
,
T. F. Jaramillo
,
J. K. Nørskov
,
K. Chan*
Nat. Commun.
2019
,
10
,
32
.
Cite
DOI
before 2019
Theoretical Approaches to Describing the Oxygen Reduction Reaction Activity of Single-Atom Catalysts
A. M. Patel
,
S. Ringe
,
S. Siahrostami
,
M. Bajdich
,
J. K. Nørskov
,
A. R. Kulkarni*
J. Phys. Chem. C
2018
,
122
,
29307 - 29318
.
Cite
DOI
Transferable ionic parameters for first-principles Poisson-Boltzmann solvation calculations: Neutral solutes in aqueous monovalent salt solutions
S. Ringe†*
,
H. Oberhofer
,
K. Reuter
J. Chem. Phys.
2017
,
146
,
134103
.
Cite
DOI
COVER
Function-Space-Based Solution Scheme for the Size-Modified Poisson-Boltzmann Equation in Full-Potential DFT
S. Ringe†
,
H. Oberhofer*
,
C. Hille
,
S. Matera
,
K. Reuter
J. Chem. Theory Comput.
2016
,
12
,
4052 - 4066
.
Cite
DOI
Cite
×