Computational simulations have become of major interest to screen potential photocatalysts for optimal band edge positions which straddle the redox potentials. Unfortunately, these methods suffer from a difficulty in resolving the dynamic solvent response on the band edge positions. We have developed a computational method based on the GW approximation coupled with an implicit solvation model that solves a generalized Poisson equation (GPE), that is, GW-GPE. Using GW-GPE, we have investigated the band edge locations of (quasi) 2D materials immersed in water and found a good agreement with experimental data. We identify two contributions of the solvent effect, termed a ‘‘polarization-field effect’’ and an ‘‘environmental screening effect’', which are found to be highly sensitive to the atomic and charge distribution of the 2D materials. We believe that the GW-GPE scheme can pave the way to predict band edge positions in solvents, enabling design of 2D material-based photocatalysts and energy systems.